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Secondary instability in surface-tension-driven Bénard convection
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We report accurate experimental investigations of surface-tension-driven Bénard convection extending up to
e=(AT—AT,)/AT .=4.5 into the supercritical range. The measurements are performed in a circular box with
an aspect ratio of 23. At £¢=2.35+0.40 hexagonal cells, perfectly organized at the onset of the primary
instability, lose stability and are gradually replaced by square cells. The transition process is mediated by

pentagons.

PACS number(s): 47.20.Dr, 47.54.+r1

Studies on pattern formation and turbulence in nonisother-
mal fluids are mainly focused on the buoyancy driven
Rayleigh-Bénard convection (RBC), although the classical
experiments of Bénard [1] were predominantly driven by
surface tension [2,3]. While experimental investigations of
RBC have been performed up to e=(AT—AT.)/
AT.=10" by Libchaber et al. (see [4] for a review; AT, is
the critical temperature difference), experiments in surface-
tension-driven Bénard convection (BC) have been restricted
to the weakly supercritical regime. This is due to the fact that
the requirement of a small layer depth, necessary for the
dominance of surface tension over buoyancy, imposes severe
constraints on the maximum of . We have extended the
accurate measurements of Koschmieder et al. [5] up to
£=4.5 into the nonlinear regime, which permitted us to
study the nonlinear evolution of the hexagonal planform in
BC at larger distances from the instability threshold. The
goal of the present paper is to report an experimental identi-
fication of a secondary instability, at which a pattern of hex-
agonal cells loses its stability against square convection cells.

On the theoretical side, the absence of reflection symme-
try and the location of the driving force at the free surface are
sources for an increased complexity of BC in comparison to
RBC. Although considerable effort toward the understanding
of BC has been undertaken in the past [5-10], our knowl-
edge about the nonlinear evolution of hexagonal Bénard cells
and their secondary instabilities is far from complete. A sys-
tematic theoretical investigation of the secondary instabilities
of hexagonal cells in BC is still lacking, in contrast to RBC
where Busse’s [11] comprehensive theory provides a rather
complete insight into the secondary instabilities of rolls. Re-
cent theoretical works on amplitude instabilities [9,12] and
phase instabilities [9] of hexagons in BC predict a successive
replacement of hexagons by rolls for e=0(1). However,
these predictions should be considered with caution due to
the limited validity of amplitude equation models in this
range.

Our experiments are performed with a 10 cS (centistoke)
silicone oil (NM 10, Hils AG) whose Prandtl number Pr
=100 at T=25 °C. We use a cylindrical cell (radius r=35.0
mm) with walls made of Plexiglas. The fluid height is
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d=1.55%+0.02 mm, leading to an aspect ratio I'=r/d=23.
The bottom of the chamber consists of a polished silicon
crystal on a 5 cm thick copper block. As upper plate of the
chamber, we use a sapphire window. The air gap between
fluid and sapphire is 0.40 mm. Care is taken in minimizing
lateral temperature gradients by placing the copper block in a
prevacuum. The sapphire window is cooled by an axisym-
metric water flow (temperature stability +0.01 K). In order
to visualize the convection pattern we use a shadowgraph
technique coupled to a digital image processing system with
a resolution of 768X512X8 bit.

The determination of the temperature difference AT
across the fluid layer is more difficult than in RBC due to the
presence of the thin air layer, whose convective state is not
amenable to direct measurement. We determine AT by mea-
suring the temperature of the fluid bottom and of the cooling
water both before and after circulating over the sapphire win-
dow [13]. From the latter two quantities we calculate the heat
flux. Taking into account the known heat conductivities and
thickness of sapphire and oil layer, together with the thick-
ness and a hypothetic conductivity of the air layer, we evalu-
ate AT. All temperature measurements are performed with
quartz crystals. This method yields a precision of 12% in the
determination of AT.

For the heating of the fluid bottom we use an electrical
resistor whose power supply is regulated by means of a PC
interface. In order to ensure a quasistatic regime, the rise of
the bottom temperature is limited to 0.07 K per hour. More-
over, the temperature is kept constant for one horizontal re-
laxation time 7;,=r2/x (approximately 3.4 hours) before tak-
ing a shadowgraph image. Thus, the typical time span for
one experiment is nearly 1007, .

Linear stability theory [3], applied to the conditions of
our system, predicts instability if A7>0.89 K, which
corresponds to a Marangoni number Ma,=(do/dT)AT_.d/
pvk=76.4 and to a Rayleigh number of Ra.=(dp/
dT)gAT d*/pvk=30.6 for a fluid with a perfectly insulating
surface. o,p,v,k,g denote surface tension, density, kine-
matic viscosity, thermal diffusivity, and gravitational accel-
eration, respectively. Note that Ma is by a temperature-
independent factor 2.5 larger than Ra, expressing the
dominance of surface tension over buoyancy. Several checks
were made in order to test the quality of the experimental
facility. The critical Marangoni number was reproduced
within the precision of the aforementioned method for deter-
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(b)

FIG. 1. Planform transition in surface-tension-driven Bénard
convection: intensity corrected shadowgraph images of the hexago-
nal pattern for e =2.4 (a) and of the square pattern for €= 3.8 after
evolution according to the first transition route (b).

mining AT. The critical wave number was 6% higher than
the critical one due to the finite I' in agreement with [14].

Figures 1(a) and 1(b) provide a first glimpse of the tran-
sition from hexagonal to square planform in BC, which con-
stitutes the main result of our work. The experiments start
with a hexagonal pattern, which is well ordered at the onset
of the primary instability and can be kept stable up to ap-
proximately e~2.4 [Fig. 1(a)]. The shadowgraph intensity at
the cell boundaries increases monotonically with & and,
above £~2.5, is accompanied by an even stronger growth of
the intensity at the cell knots as highlighted in Fig. 2. Beyond
e~3.4, the convective cells appear as an arrangement of
bright spots, corresponding to the cell knots, in the shadow-
graph image [Fig. 1(b)]. Qualitatively similar phenomena
have been observed in the direct numerical simulation of
Ref. [10] for BC. Above £=2.35+0.40 (see below) we ob-
serve a smooth transition from hexagonal convection cells to
square cells. Figure 1(b) shows a state consisting of two
domains with square cells. In order to quantitatively charac-
terize the transition process we consider the power spectral
density P(k,¢), belonging to the shadowgraph intensity
fields in Fig. 1, where k and ¢ denote the polar coordinates
in the two-dimensional wave number space. Following Ref.
[15] we evaluate the azimuthal distribution Q(¢) of the
power spectral density P,

1 (k2
Q(<P)'—’Wfk1 dk kP(k,e), (1

where W is a normalization factor. The domain of radial
integration is restricted to the immediate vicinity of the main

FIG. 2. Shadowgraph image for € =2.8 showing the coexistence
of hexagons and squares during the evolution according to the sec-
ond transition route.
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FIG. 3. The symmetry changes during the hexagon-square tran-
sition: azimuthal distribution of the power spectral density for
=24 (a) and £¢=3.8 (b).

peaks. Higher harmonics are filtered out using a binomial
filter. Figure 3 quantitatively affirms the visually observed
transition from the sixfold symmetry, in which the wave vec-
tors of the main peaks are separated by an angle of 60°, to
the fourfold symmetry with an angle of 90° between the
main peaks. Although the pattern of Fig. 1(b) underlying Fig.
3(b) consists of two differently oriented domains of square
cells, the fourfold symmetry is well reflected by Q(¢). The
reason for the nonequipartition of the shadowgraph intensity
among the peaks in Fig. 3(a) is not entirely obvious. How-
ever, we did not find any systematic preference for particular
peaks in different experimental runs.

After having characterized its integral properties, let us
consider the transition from a local point of view. We found
the elementary process to occur via gradual merging of cell
knots as sketched in Fig. 4, which was generated from two
digitized shadowgraph images. Adjoining cell knots, two
pairs of which are highlighted by arrows, of a hexagonal cell
move towards each other [Fig. 4(a)]. The approach of the
knots proceeds with different speed in the particular pairs.
Consequently, a pentagon is formed in an intermediate step
before a square cell [Fig. 4(b)] is attained.

We have identified two routes by which the square cells
invade the initially hexagonal convective pattern. In the first
one, which is observed in 8 of 10 experiments, the transfor-
mation of hexagons into pentagons starts at five points lo-
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(a)

FIG. 4. Merging of cell knots during the hexagon-square-
transition for £=3.4 (a) and £=3.5 (b).

cated along the circumference of the fluid. The pentagons
spread into the still hexagonal domain, leaving squares be-
hind. Figure 1(b) shows the final result of this route. In the
second route the transformation of hexagons into pentagons
starts at only one location in the vicinity of the wall. A
straight front of pentagons moves through the container, con-
verting hexagons into pentagons. The coexistence of hexa-
gons and squares in this regime can be seen in Fig. 2. The
cause for the appearance of the two distinct scenarios is not
entirely obvious. It can be speculated that the second route is
triggered by a small angle between the sapphire plate and the
fluid surface, slightly increasing locally the temperature dif-
ference across the layer.

Next we turn to the characterization of the composition of
the pattern, comprising different amounts of hexagons, pen-
tagons, and squares, during the hexagon-square transition. To
this end we introduce the quantities p;=N;/N (i=4,5,6)
where the N; represent the number of squares (i =4), penta-
gons (i=15), and hexagons (i=06), respectively. N stands for
the total number of cells in the container, excluding the “in-
complete” cells along the rim. Although care was taken in
ensuring thermal equilibration we have to note a consider-
able scatter between the p; of different experimental runs.
This is likely to be an intrinsic feature of the system rather
than a deficiency of the experimental apparatus, indicating
the existence of a multitude of quasiequilibria. As a result of
the defect dynamics taking place in the evolving convective
structure, we observe, above £~1, a decrease of the hexagon
number [Fig. 5(a)]. As evident from Fig. 5(b) the overall loss
of hexagons is approximately equal to the gain of pentagons.
Above £~2.3 this transformation is accompanied by the
transformation of pentagons into squares, the amount of
which starts to grow [Fig. 5(c)]. We wish to remark that a
small percentage of cells, especially those connecting do-
mains of square cells with different orientation, has a tetra-
gonal rather than a square planform. The special role of the
pentagons as the catalyzing elements of the transition is dis-
played in Fig. 5(b). The number of pentagons reaches a
maximum at £=3.4%0.6 which coincides approximately
with the maximum slope of the square and hexagon num-
bers. An unambiguous determination of the number of edges
is in some cases not possible due to a very small distance
between two adjoining cell knots. This is the cause for a
small deviation of the measured quantities from the normal-
ization condition p4+ ps+pe=1. An exact determination of
the critical value for the onset of the hexagon-square transi-
tion is difficult. Due to the continuous character of the tran-
sition, the change in the heat transport connected with the
appearance of square cells is so small in the early stages
that it cannot be reliably detected in our Nusselt number
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FIG. 5. Dependence of the number of hexagons p¢ (a), penta-
gons ps (b), and squares p, (c), on . The diagrams contain the
results of seven different independent experimental runs. The lines
are drawn to guide the eye.

measurements. In order to give a quantitative measure
for the onset of the secondary instability we apply a linear
least-square fit to the number of square cells as a function of
€ in the interval 2.0<e<4.0 [cf. Fig. 5(c)]. This gives p4
=0.29¢—0.68 which provides the threshold £;=2.35+0.40
for the hexagon-square transition. The uncertainty of 17% in
the determination of & is caused both by the error in the
determination of AT and by the nonuniqueness of the fit.
Note that p, cannot serve as an order parameter with the
hypothetic square root behavior, because the ideal transition
would proceed directly from hexagons to squares, i.e.,
p4=0 for e<eg and p,=1 for e>¢g, as shall be discussed
at the end of this paper.
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In order to check the robustness of the observed phenom-
ena, several other silicone oils have been tested. Experiments
with an oil of a different manufacturer (Wacker Chemie AG),
having the same Pr, brought only shifts within the error of
the previous measurements. In order to exclude transient ef-
fects we performed an experiment in which £€=3.5 was held
constant over a time span of 407,, much larger than the
thermal equilibration time (17,) of the previous experiments.
The values of the p; remained stable up to a scatter of £15%
with no tendency of ps to relax to smaller values. Using an
oil with Pr=200, we observed the hexagon-square transition
to be shifted to a higher &, indicating the significance of the
viscous properties of the fluid. A systematic investigation in
fluids with Pr>200 is technically more difficult and consti-
tutes the subject of ongoing investigations.

A specific difficulty of BC is the possibility of uncon-
trolled heat transfer enhancement due to convection in the air
layer as well as increased evaporation of the oil due to a
small but nonzero volatility. Our estimates, based on the nu-
merical results of Ref. [10], show that the first effect is weak
if the Péclet number in the air Pe ;= ce(k8/k 4, d) is small.
Here c is a numerical factor of the order ¢ ~30-50, «,; is
the heat diffusivity of the air, and ¢ the thickness of the air
layer. Notice that even with the most pessimistic estimate
c=50 we get, at our highest supercritical value £€=4.5, a
value of Pe,;~0.3, which is well below unity and which is
comparable in magnitude to the experimental uncertainty of
our temperature measurements.

The secondary instability observed in the present work
differs markedly from other transitions which have been
studied so far. None of the documented square patterns
[16,17] evolves from a hexagonal planform, as in our case.
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In contrast to hexagon-roll competition in RBC with non-
Boussinesq fluids [18], three planforms are involved in our
transition.

A final comment is necessary on the possibility of a theo-
retical explanation of the hexagon-square transition. After we
had finished this work, direct numerical simulations (DNS’s)
of BC [19] have confirmed the existence and robustness of
the hexagon-square transition. Furthermore, very recent in-
vestigations of BC with amplitude equations [20] reflect this
transition too and show the coexistence of hexagons and
squares. Apart from DNS and amplitude equations, another
obvious approach consists in the investigation of the second-
ary instabilities of hexagons following the method employed
by Busse for the investigation of rolls in RBC [11]. It is
likely that the most unstable mode responsible for the dis-
placement of knots (cf. Fig. 4), and therefore for the transi-
tion from hexagons to squares, must be sought among the
class of perturbations directed along one of the symmetry
lines of the hexagonal lattice. Note that this ideal bifurcation,
compatible with our observations from Fig. 4, proceeds di-
rectly from deformed hexagons (i.e., ps=1, p4=0) to tet-
ragons (i.e., ps=0, p4=1). In a finite domain, only an im-
perfect bifurcation can occur which goes over the
intermediate stage of a third planform.

The authors thank E. L. Koschmieder for his helpful
comments in the early stage of the experiments, M. Beste-
horn for stimulating discussions, and C. Perez-Garcia and
A. Golovin for communicating their results prior to pub-
lication. Financial support from the Sachsisches Staatsminis-
terium fur Wissenschaft und Kunst and from the Deutsche
Forschungsgemeinschaft (Grant No. Th497/8-1) is gratefully
acknowledged.

[1] H. Bénard J. Phys. (Paris) 9, 513 (1900).
[2] M. 1. Block, Nature (London) 178, 650 (1956).
[3] J. R. Pearson, J. Fluid Mech. 4, 489 (1958); D. A. Nield, ibid.
19, 341 (1964).
[4] E. D. Siggia, Annu. Rev. Fluid Mech. 26, 137 (1994).
[5] E. L. Koschmieder and D. W. Switzer, J. Fluid Mech. 240, 533
(1992), and references therein.
[6] J. W. Scanlon and L. A. Segel, J. Fluid Mech. 30, 149 (1969).
[7] P. Cerisier, C. Perez-Garcia, and R. Ocelli, Phys. Rev. A 47,
3316 (1993), and references therein.
[8] A. Cloot and G. Lebon, J. Fluid Mech. 145, 447 (1984).
[9] M. Bestehorn, Phys. Rev. E 48, 3622 (1993).
[10] A. Thess and S. A. Orszag, J. Fluid Mech. 283, 201 (1995).
[11] F. H. Busse, in Hydrodynamic Instabilities and the Transition
to Turbulence, edited by H. L. Swinney and J. P. Gollub
(Springer, Berlin, 1981), and references therein.

[12] J. Bragard and G. Lebon, Europhys. Lett. 21, 831 (1993).

[13] E. L. Koschmieder, Rev. Sci. Instrum. 45, 1164 (1974).

[14] P. Cerisier, C. Pérez-Garcia, and J. Pantaloni, Phys. Rev. A 35,
1949 (1987).

[15]J. P. Gollub and A. R. McCarriar, Phys. Rev. A 26, 3470
(1982).

[16] P. Le Gal, A. Pocheau, and V. Croquette, Phys. Rev. Lett. 54,
2501 (1985); E. Moses and V. Steinberg, ibid. 57, 2018 (1986).

[17] E. L. Koschmieder, Beitr. Phys. Atmos. 39, 1 (1966).

[18] S. Ciliberto, E. Pampaloni, and C. Pérez-Garcia, Phys. Rev.
Lett. 61, 1198, (1988); E. Pampaloni, C. Pérez-Garcia, L. Al-
bavetti, and S. Ciliberto, J. Fluid Mech. 234, 393 (1992).

[19] M. Bestehorn, Phys. Rev. Lett. (to be published). .

[20] C. Kubstrup, H. Herrero and C. Perez-Garcia (unpublished); A.
Golovin (private communication).



@) " ()

FIG. 1. Planform transition in surface-tension-driven Bénard
convection: intensity corrected shadowgraph images of the hexago-
nal pattern for e =2.4 (a) and of the square pattern for £ = 3.8 after
evolution according to the first transition route (b).



FIG. 2. Shadowgraph image for £ =2.8 showing the coexistence
of hexagons and squares during the evolution according to the sec-
ond transition route.
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FIG. 4. Merging of cell knots during the hexagon-square-
transition for £=3.4 (a) and £=3.5 (b).



